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CHAPTER 1

Installation

1.1 Dependencies

• Python 3.6 or above

• numpy

• scipy

• matplotlib

• Optional: jupyter

stochrare only requires a running Python 3 install and standard scientific packages. Tutorial notebooks require Jupyter.

1.2 Basic Install

The easiest way to install stochrare is from the Python Package Index, using the Python Package Installer:

pip install stochrare

1.3 Development Mode Install

If you intend to edit the code, you should install stochrare in development mode.

First clone the repository:

git clone https://github.com/cbherbert/stochrare

Then go to the directory and install the package in development mode:
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cd stochrare
pip install -e .
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CHAPTER 2

Tutorials

To illustrate the functionnalities and use cases of stochrare, we provide Jupyter notebooks, which can either be viewed
by clicking the links below or run interactively, either by downloading your local copy of the repository, or on Binder,
without installing anything: .

2.1 1D Diffusion

This tutorial illustrates some basic features of the stochrare package with simple 1D diffusion processes.

First, let us import standard packages: numpy and matplotlib.

[1]: import numpy as np
import matplotlib.pyplot as plt

2.1.1 Monte-Carlo simulation of 1D diffusions

One of the very common tasks stochrare can be used for is sampling trajectories of a stochastic process, or esti-
mating directly some statistical properties of the process. We have tried to design the package so that such tasks can be
easily fulfilled with an intuitive interface. The generic class for 1D diffusion processes is stochrare.dynamics.
diffusion1d.DiffusionProcess1D. As we shall see later in this tutorial, any 1D diffusion process can be
represented as members of this class, simply by providing the drift and diffusion functions to the constructor. But the
package also ships with predefined standard processes, like the Wiener process. Let us import this process:

[2]: from stochrare.dynamics.diffusion1d import Wiener1D

Sample paths

First, we seed the random number generator with a fixed value, so that the results are always the same when we run the
whole notebook. Of course, if you run a given cell multiple times, you will get different realizations of the stochastic
processes.
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[3]: np.random.seed(seed=100)

The basic tool to generate sample paths is the trajectory method. It integrates numerically stochastic differential
equations of the form:

𝑑𝑋𝑡 = 𝐹 (𝑋𝑡, 𝑡) + 𝜎(𝑋𝑡, 𝑡)𝑑𝑊𝑡.

Let us start by plotting sample paths of the Wiener process 𝑊 (also known as Brownian motion) with a one-liner:

[4]: Wiener1D().trajectoryplot(*[Wiener1D().trajectory(0.,0.,T=100) for _ in range(100)]);

Or, in a different style:

[5]: from stochrare.io.plot import trajectory_plot1d
def ensemble_plot1d(*args, **kwargs):

fig, ax = trajectory_plot1d(*((t, x, {'color': 'skyblue', 'alpha': 0.1}) for t, x
→˓in args), **kwargs)

ax.plot(*np.array(args).mean(axis=0), color='steelblue', lw=2)
return fig, ax

with plt.style.context(('dark_background')):
ensemble_plot1d(*[Wiener1D().trajectory(0., 0., T=1, dt=0.01) for _ in

→˓range(200)]);
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We have used two convenience methods that we provide for making quick plots: trajectory_plot1d,
which is a function from the stochrare.io.plot submodule, and trajectoryplot, a method of
DiffusionProcess1D objects which just provides an interface to trajectory_plot1d for quick access, and
which can be overriden by subclasses to systematically include specific details in trajectory plots.

Observables and PDFs

We now estimate some statistical properties of stochastic processes.

Let us first check that for the Brownian motion the mean square displacement increases linearly with time:

[6]: ensemble = np.array([Wiener1D().trajectory(0., 0., T=10, dt=0.01) for _ in
→˓range(1000)])
time = np.average(ensemble[:, 0, :], axis=0)
ax = plt.axes(xlabel='t', ylabel='r')
ax.plot(time, np.average(ensemble[:, 1, :]**2, axis=0), label=r'$\langle \Delta x^2
→˓\rangle$')
ax.plot(time, 2*time, label=r'$2Dt$')
ax.legend()
plt.show()

2.1. 1D Diffusion 5
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Now we estimate the probability for the stochastic process to take value 𝑥 at time 𝑡, knowing the initial condition
𝑋𝑡0 = 𝑥0, i.e. the transition probability 𝑝(𝑥, 𝑡|𝑥0, 𝑡0). For this, the empirical_vector method should be used: it
simulates on the fly an ensemble of sample paths and returns the histogram of the values at each desired time.

Again, we work with the Wiener process, for which an analytical solution is known:

𝑝(𝑥, 𝑡|0, 0) =
1√

4𝜋𝐷𝑡
𝑒−𝑥2/4𝐷𝑡.

This solution is hard-coded in the Wiener1D class, in the _fpthsol method.

Both solutions are represented using the pdf_plot1d function, another tool for quick plots dedicated to probability
distributions. In the figure below, the Monte-Carlo estimate is the solid line and the theoretical result is the dotted line.

[7]: from stochrare.io.plot import pdf_plot1d
pdf = list(Wiener1D().empirical_vector(0, 0, 10000, 1, 5, bins=20))
fig, ax, lines = pdf_plot1d(*((0.5*(xx[1:]+xx[:-1]), pp, {'label': f't={t}'}) for t,
→˓pp, xx in pdf));
pdf_plot1d(*((0.5*(xx[1:]+xx[:-1]), Wiener1D()._fpthsol(0.5*(xx[1:]+xx[:-1]), t),

{'ls': 'dotted', 'color': l.get_color()}) for l, (t, _, xx) in
→˓zip(lines, pdf)),

fig=fig, ax=ax);
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Numerical convergence

The sample paths computed with the trajectory method are discrete approximations of the sample paths of the
stochastic differential equation, using the Euler-Maruyama method, which consists in computing a sequence of random
numbers 𝑋𝑛 defined by:

𝑋𝑛+1 = 𝑋𝑛 + 𝐹 (𝑋𝑛, 𝑡𝑛)∆𝑡 + 𝜎(𝑋𝑛, 𝑡𝑛)∆𝑊𝑛,

where 𝑡𝑛 is the sample time, ∆𝑡 = 𝑡𝑛+1 − 𝑡𝑛 the time step of the method and ∆𝑊𝑛 = 𝑊𝑡𝑛+1 − 𝑊𝑡𝑛 a Gaussian
random variable with zero mean and variance ∆𝑡.

Let us now illustrate the numerical convergence of the Euler-Maruyama method. For this, we precompute the Brown-
ian path with respect to which we integrate the SDE, and we vary the time step used for the Euler-Maruyama method.

We do this for a stochastic process which can be analytically solved:

𝑑𝑋𝑡 = 2𝑋𝑡𝑑𝑡 + 𝑋𝑡𝑑𝑊𝑡,

and compare the numerical approximation to the analytical solution, 𝑋𝑡 = 𝑋0𝑒
3𝑡/2+𝑊𝑡 . This stochastic process is

easily constructed through the constructor of the generic class DiffusionProcess1D:

[8]: from stochrare.dynamics.diffusion1d import DiffusionProcess1D
model = DiffusionProcess1D(lambda x, t: 2*x, lambda x, t: x)

[9]: dt_brownian = 0.001
brownian_path = Wiener1D(D=0.5, deterministic=True).trajectory(0., 0., T=1, dt=dt_
→˓brownian)
model.trajectoryplot((brownian_path[0], np.exp(1.5*brownian_path[0]+brownian_
→˓path[1])),

model.trajectory(1., 0., T=1, dt=4*dt_brownian, brownian_
→˓path=brownian_path),

model.trajectory(1., 0., T=1, dt=16*dt_brownian, brownian_
→˓path=brownian_path),

labels=('Exact', r'$\Delta t= 4 \delta t$', r'$\Delta t = 16
→˓\delta t$'));

Slightly more precisely, let us try to illustrate that the Euler-Maruyama has strong order of convergence 1/2:

E|𝑋𝑛 −𝑋𝑡𝑛 | ≤ 𝐶∆𝑡1/2.

2.1. 1D Diffusion 7
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Below, we plot the error on the final point as a function of the time step used in the Euler-Maruyama method, and we
compare to a linear regression and to a reference line with slope 1/2.

[10]: import scipy.stats

ensemble_size = 1000
dt_brownian = 0.002
dtarr = np.array((1, 2, 4, 8, 16))*dt_brownian
model = DiffusionProcess1D(lambda x, t : 2*x, lambda x, t: x)
trajs = np.array([[np.abs(model.trajectory(1., 0., T=1, dt=dt,

brownian_path=brownian_path)[1][-1]-np.
→˓exp(1.5*brownian_path[0][-1]+brownian_path[1][-1]))

for dt in dtarr]
for brownian_path in (Wiener1D(D=0.5).trajectory(0., 0., T=1, dt=dt_

→˓brownian) for _ in range(ensemble_size))])
error = trajs.mean(axis=0)

ax = plt.axes(xlim=(0.001, 0.1), xlabel=r'$\Delta t$', ylabel=r'$\mathbb{E}|\hat{X}_T-
→˓X_T|$', xscale='log', yscale='log')
ax.scatter(dtarr, error)
slope, intercept, _, _, _ = scipy.stats.linregress(np.log10(dtarr), np.log10(error))
ax.plot(dtarr, 10**intercept*dtarr**slope, label=r'$\Delta t^{'+format(slope, '.2f')+
→˓'}$', color='C1')
ax.plot(dtarr, error[0]*(dtarr/dtarr[0])**0.5, label=r'$\Delta t^{1/2}$', color='C2')
ax.legend();

2.1.2 Numerical solution of the Fokker-Planck equation

Above we have considered stochastic processes fron the standpoint of stochastic differential equations. We now turn
to an alternative point of view, the probability distribution. Markov processes are fully determined by the transition
probabilities 𝑝(𝑥′, 𝑡′|𝑥, 𝑡), which satisfy the Fokker-Planck equations:

𝜕𝑃

𝜕𝑡
= − 𝜕

𝜕𝑥
[𝐹𝑃 ] +

1

2

𝜕2

𝜕𝑥2
[𝜎2𝑃 ].

Some properties of stochastic processes are much more conveniently addressed in the Fokker-Planck framework:
rather than requiring the simulation of many sample paths, probability distributions can be computed directly by
solving a partial differential equation.
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The package includes a basic finite-difference solver for the 1D Fokker-Planck equation. We illustrate its use below.

Let us first import the submodule:

[11]: import stochrare.fokkerplanck as fp

All we need to do is create an object representing the Fokker-Planck equation (an instance of the FokkerPlanck1D
class) and then use its fpintegrate method:

[12]: fpe = fp.FokkerPlanck1D(lambda x, t: 0, lambda x, t: 1)
t, X, P = fpe.fpintegrate(0, 1, dt=0.001, npts=400, bounds=(-20., 20.), P0=fpe.
→˓dirac1d(0, np.linspace(-20, 20, 400)),

bc=('absorbing', 'absorbing'))
pdf_plot1d((np.array(X), np.array(P)), legend=False);

Note that we have provided as arguments to fpintegrate the domain on which to solve the equation (bounds),
the space resolution (npts), the time step (dt), as well as the boundary conditions (bc; here they are both absorbing
boundary conditions) and an initial distribution (P0).

FokkerPlanck1D objects offer another method to compute easily the probability distribution at differ-
ent times: fpintegrate_generator is a generator yielding the pdf at times given as arguments (see
API documentation for more information). It relies on fpintegrate under the hood. For convenience,
ConstantDiffusionProcess1D objects offer a pdfplot method which wraps the FokkerPlanck1D.
fpintegrate_generator method. As an example, the solution of the heat equation at different times can be
obtained as a one-liner:

[13]: Wiener1D().pdfplot(1, 5, 10, dt=0.001, npts=400, bounds=(-20.0, 20.0), t0=0.0,
P0=fpe.dirac1d(0, np.linspace(-20, 20, 400)), bc=('absorbing',

→˓'absorbing'), th=True);

2.1. 1D Diffusion 9
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The theoretical solution is shown as a dotted line with the same color.

Effect of Boundary Conditions

Above we have compared the solution of the Fokker-Planck equation with absorbing boundary conditions with the
theoretical solution on an infinite domain. Discrepancies should start appearing when we reach the boundaries.

[14]: Wiener1D().pdfplot(1, 10, 50, dt=0.01, npts=100, bounds=(-20.0, 20.0), t0=0.0,
P0=fpe.dirac1d(0, np.linspace(-20, 20, 100)), bc=('absorbing',

→˓'absorbing'), th=True);

Below, we solve the equation with reflecting boundary conditions on both sides. In that case, we expect the system to
reach a stationary state where the probability distribution is uniform on the interval.

[15]: Wiener1D().pdfplot(1, 10, 50, 200, dt=0.01, npts=100, bounds=(-20.0, 20.0), t0=0.0,
P0=fpe.dirac1d(0, np.linspace(-20, 20, 100)), bc=('reflecting',

→˓'reflecting'));
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Comments on numerical aspects

With the default Euler time-stepping scheme, the time step 𝑑𝑡 should be much smaller than 𝑑𝑥2/𝐷, with 𝑑𝑥 the spatial
resolution and 𝐷 the diffusivity. For instance, if we decrease the diffusivity by a factor 10, we can afford to multiply
the time step by the same factor (of course the probability distribution will spread 10 times slower).

[16]: Wiener1D(D=0.1).pdfplot(10, 100, dt=0.01, npts=400, bounds=(-20.0, 20.0), t0=0.0,
P0=fpe.dirac1d(0, np.linspace(-20, 20, 400)), bc=('absorbing',

→˓ 'absorbing'), th=True);

With the implicit and Crank-Nicolson schemes, we can afford using much larger timesteps than with the explicit
method, as illustrated below:

[17]: Wiener1D(D=1).pdfplot(1, 10, dt=0.005, npts=400, bounds=(-20.0, 20.0), t0=0.0,
P0=fpe.dirac1d(0, np.linspace(-20, 20, 400)), bc=('absorbing',

→˓'absorbing'), method='explicit');

2.1. 1D Diffusion 11
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[18]: Wiener1D(D=1).pdfplot(1, 10, dt=0.05, npts=400, bounds=(-20.0, 20.0), t0=0.0,
P0=fpe.dirac1d(0, np.linspace(-20, 20, 400)), bc=('absorbing',

→˓'absorbing'), method='implicit', th=True);

[19]: Wiener1D(D=1).pdfplot(1, 10, dt=0.025, npts=400, bounds=(-20.0, 20.0), t0=0.0,
P0=fpe.dirac1d(0, np.linspace(-20, 20, 400)), bc=('absorbing',

→˓'absorbing'), method='cn', th=True);
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2.2 More simulations

In the previous tutorial we only simulated simple 1D diffusion processes. Here, we show more examples of simula-
tions with different dynamics, illustrating in particular the generic class stochrare.dynamics.diffusion.
DiffusionProcess.

2.2.1 2D Diffusions: gradient dynamics

Let us start with basic diffusion processes in 2D: the Wiener process and the Ornstein-Uhlenbeck process.

[1]: import numpy as np
import matplotlib.pyplot as plt
from stochrare.dynamics.diffusion import Wiener, OrnsteinUhlenbeck

[2]: np.random.seed(seed=100)

[3]: ax = plt.axes(xlabel=r'$x$', ylabel=r'$y$')
for _ in range(4):

t, x = Wiener(2).trajectory(np.array([0., 0.]), 0., dt=0.01)
ax.plot(x[:, 0], x[:, 1])

2.2. More simulations 13
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[4]: time, dist2 = zip(*[(t,r) for t,r in Wiener(2).sample_mean(np.array([0.,0.]), 0.,
→˓1000, 1000, dt=0.01,

observable=lambda x, t:
→˓x[0]**2+x[1]**2)])
ax = plt.axes(xlabel=r'$t$', ylabel=r'$r$')
ax.grid()
ax.plot(time, dist2, label=r'$\langle \Delta x^2 \rangle$')
ax.plot(time, 4*np.array(time), label=r'$4Dt$')
ax.legend();

[5]: model = OrnsteinUhlenbeck(0,1, 0.1, 2)
xvec = np.linspace(-1., 1.)
yvec = np.linspace(-1., 1.)
potential = np.array([model.potential(np.array([x, y])) for x in xvec for y in yvec]).
→˓reshape(50, 50)
fig = plt.figure(figsize=(5, 5))
ax = plt.axes(xlabel=r'$x$', ylabel=r'$y$')
ax.axis('equal')
ax.contourf(xvec, yvec, potential, 30, cmap='copper')

(continues on next page)
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(continued from previous page)

t, x = model.trajectory(np.array([0., 0.]), 0., T=2, dt=0.001)
ax.plot(x[:, 0], x[:, 1], color='white');

2.2.2 Langevin equation

Now we simulate the Langevin dynamics:

�̇� = 𝑝/𝑚, �̇� = −𝑉 ′(𝑥) − 𝛾𝑝 + 𝜂(𝑡),

with a harmonic potential 𝑉 (𝑥) = 𝑥2/2 and E[𝜂(𝑡)𝜂(𝑡′)] = 𝐷𝛿(𝑡− 𝑡′).

[6]: from stochrare.dynamics.diffusion import DiffusionProcess
gamma = 0
def langevin(gamma, D):

return DiffusionProcess(lambda X, t: np.array([X[1], -X[0]-gamma*X[1]]),
lambda X, t: np.array([[0., 0.], [0., D]]))

Without friction and noise (𝛾 = 𝐷 = 0), the system is Hamiltonian and 𝐻 = 𝑥2 + 𝑝2 is conserved. Adding some
friction 𝛾 > 0, the system relaxes towards equilibrium in a spiraling motion, because of inertia. With noise, we inject
energy randomly in the system, and the stationary distribution spreads over a region of phase space centered on the
origin.

[7]: xvec = np.linspace(-1., 1.)
pvec = np.linspace(-1., 1.)
ax = plt.axes(xlabel=r'$x$', ylabel=r'$p$')
t, x = langevin(0, 0).trajectory(np.array([1., 0.]), 0., T=10, dt=0.001)
ax.plot(x[:,0], x[:,1]);
t, x = langevin(0.5, 0).trajectory(np.array([1., 0.]), 0., T=10, dt=0.001)
ax.plot(x[:,0], x[:,1]);
t, x = langevin(0.5, 0.2).trajectory(np.array([1., 0.]), 0., T=20, dt=0.001)
ax.plot(x[:,0], x[:,1]);

2.2. More simulations 15
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[ ]:

2.3 First Passage Times: the Kramers problem

This tutorial illustrates the use of the stochrare package for first-passage time computations in the context of the
Kramers problem [1] (diffusion in a double well potential). Here, we simply compute numerically the rate of transition
between the two attractors.

2.3.1 References

• [1] Kramers, Physica, 7, 284-304 (1940)

• [2] Gardiner, Handbook of Stochastic Methods, Springer, chap. 9 and §5.5.

• [3] Risken, The Fokker-Planck equation, Springer, §5.10

• [4] Caroli, Caroli and Roulet, J. Stat. Phys., 21, 415-437 (1979)

• [5] Caroli, Caroli and Roulet, J. Stat. Phys., 26, 83-111 (1981)

• [6] Hanggi, Talkner, Borkovec, Rev. Mod. Phys., 62, 251-342 (1990)

[1]: %matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
import stochrare as sr

Let us define the DoubleWell class, corresponding to a simple bistable system, by subclassing the generic 1D
diffusion class ConstantDiffusionProcess1D:

[2]: class DoubleWell(sr.dynamics.diffusion1d.ConstantDiffusionProcess1D):
"""
Double well potential model.
"""
default_dt = 0.01

(continues on next page)
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(continued from previous page)

def __init__(self, Damp, **kwargs):
sr.dynamics.diffusion1d.ConstantDiffusionProcess1D.__init__(self, lambda x, t:

→˓ -x*(x**2-1), Damp, **kwargs)

def potential(self, X, t):
"""
Return the value of the potential at the input points.
"""
Y = X**2
return Y*(Y-2.0)/4.0

The dynamics is given by the stochastic differential equation:

𝑑𝑋𝑡 = −𝑉 ′(𝑋𝑡)𝑑𝑡 +
√

2𝐷𝑑𝑊𝑡,

with 𝑉 (𝑥) = 𝑥4/4 − 𝑥2/2.

2.3.2 Qualitative understanding

Deterministic dynamics

Let us first look at the dynamics for the deterministic system: we plot below the phase portrait of the system, super-
imposed upon the potential.

[3]: ax = plt.axes(xlabel='t', ylabel='x(t)')
X = np.linspace(-1.5, 1.5, num=100)
ax.contourf(np.linspace(0, 10), X, np.tile(DoubleWell(0).potential(X, 0), (50, 1)).T,
→˓50, cmap='copper')
for x0 in X:

ax.plot(*DoubleWell(0).trajectory(x0, 0, T=10), color='white')

𝑥 = −1 and 𝑥 = 1 are stable fixed points with basins of attraction ] −∞, 0[ and ]0,+∞[, respectively, separated by
an unstable fixed point at 𝑥 = 0. Typical relaxation time is of order one but diverges as 𝑥0 goes to 0.

2.3. First Passage Times: the Kramers problem 17
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Noise-induced transitions between the two attractors

When the diffusion coefficient does not vanish, one should expect transitions between the two attractors. Let us
illustrate this below with a moderate value of the noise.

[4]: DoubleWell.trajectoryplot(DoubleWell(0.1, deterministic=True).trajectory(-1, 0,
→˓T=1000, dt=0.01));

The stationary distribution of the system should therefore be bimodal. It is simply given by 𝑒−𝑉 (𝑥)/𝐷, up to a nor-
malization factor. Let us compute this stationary distribution numerically by solving the Fokker-Planck equation with
absorbing boundary conditions at a sufficient distance.

[5]: _, ax = DoubleWell(0.1).pdfplot(0.0, 10.0, 100.0, dt=0.0005, npts=600, bounds=(-3.0,
→˓3.0),

P0=sr.fokkerplanck.FokkerPlanck1D.gaussian1d(-1, 0.1,
→˓np.linspace(-3, 3, 600)));
x = np.linspace(-3, 3)
V = DoubleWell(0.1).potential(x, 0)
ax.plot(x, np.exp(-V/0.1)/np.trapz(np.exp(-V/0.1), x=x), color='black', ls='dotted',
→˓lw=2);

/Users/corentin/codes/stochrare/stochrare/fokkerplanck.py:151: FutureWarning:
→˓elementwise comparison failed; returning scalar instead, but in the future will
→˓perform elementwise comparison
if P0 == 'gauss':

/Users/corentin/codes/stochrare/stochrare/fokkerplanck.py:153: FutureWarning:
→˓elementwise comparison failed; returning scalar instead, but in the future will
→˓perform elementwise comparison
if P0 == 'dirac':

/Users/corentin/codes/stochrare/stochrare/fokkerplanck.py:157: FutureWarning:
→˓elementwise comparison failed; returning scalar instead, but in the future will
→˓perform elementwise comparison
if P0 == 'uniform':
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Particles initially concentrated in the left well tunnel through the potential barrier, and ultimately the relative probabil-
ity of the two attractors is the same (because the quasi-potential is symmetric).

To study the statistical properties of the transitions between the two attractors, we introduce the first-passage time:

𝜏𝑀 = inf{𝑡 > 0, 𝑋𝑡 > 𝑀 |𝑥0 = −1}.

It is a random variable entirely determined by the stochastic process 𝑋 . In stochrare, it can be represented by the
FirstPassageProcess class:

[6]: tau = sr.firstpassage.FirstPassageProcess(DoubleWell(0.1))

Methods of the FirstPassageProcess class allow for sampling the random variable, estimating its mean, mo-
ments and PDF, using direct simulation or using the Fokker-Planck equation.

[7]: tau_samples = tau.escapetime_sample(-1, 0, 0.5, ntraj=10000)

[8]: tau.escapetime_pdfplot(tau.escapetime_pdf(tau_samples))
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The same result can be obtained by solving the Fokker-Planck equation for the transition probability 𝑃 (𝑥, 𝑡| − 1, 0)
with a reflecting boundary condition on the left side of the domain (sufficiently far) and an absorbing condition at
𝑥 = 𝑀 . Then 𝐺(𝑥0, 𝑡) =

∫︀𝑀

−∞ 𝑃 (𝑥, 𝑡|𝑥0, 0)𝑑𝑥, with 𝑥0 = −1 is the probability that the particle is still in the domain
after time 𝑡, i.e. 𝑃 [𝜏𝑀 > 𝑡]. Taking the opposite of the derivative with respect to time, we obtain the PDF of the
first-passage time.

This computation can be done using the method firstpassagetime_cdf:

[9]: tFP, pFP = tau.firstpassagetime_cdf(-1.0, 0.5, *np.arange(10.0, 201.0, 10.0), dt=0.
→˓0001,

out='pdf', npts=200, bounds=(-4.0,0.5))

In fact, the function 𝐺 defined above satisfies the backwards Fokker-Planck equation. It can therefore be computed
directly using the adjoint Fokker-Planck operator:

[10]: tFPb, pFPb = tau.firstpassagetime_cdf_adjoint(-1.0, 0.5, *np.arange(10.0, 201.0, 10.
→˓0), dt=0.0001,

out='pdf', npts=200, bounds=(-4.0,0.5))

When the noise is small enough, it is expected that the transition times are Poisson distributed. Their statistics is
entirely determined by the transition rate (the parameter of the Poisson distribution), which is the inverse of the
average time between two transitions.

Let us compare the PDF of the first-passage time computed in the three ways mentioned above with the Poisson
distribution, estimating the parameter from the Monte-Carlo simulation.

[11]: ax = plt.axes(xlabel=r'$\tau_M$', ylabel=r'$p(\tau_M)$', yscale='log', ylim=(5e-4, 2e-
→˓2), xlim=(0, 200))
ax.scatter(*tau.escapetime_pdf(tau_samples), label='MC');
t = np.linspace(*ax.get_xlim())
ax.plot(tFP, pFP, label='FP',marker='+',markeredgewidth=1.5, color='C1')
ax.plot(tFPb, pFPb, label='FPadjoint',marker='x',markeredgewidth=1.5, color='C2')
ax.plot(t, np.exp(-t/np.mean(tau_samples))/np.mean(tau_samples), color='C3', label=
→˓'Poisson');
ax.legend();
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2.3.3 Computing the transition rate

Let us now study what determines the transition rate, or equivalently, the mean first-passage time. For 1D homoge-
neous processes, a theoretical result can be obtained analytically:

E[𝜏𝑀 ] =
1

𝐷

∫︁ 𝑀

−1

𝑑𝑥𝑒𝑉 (𝑥)/𝐷

∫︁ 𝑥

−∞
𝑒−𝑉 (𝑦)/𝐷𝑑𝑦.

In the small noise limit 𝐷 → 0, a saddle-point approximation yields the Eyring-Kramers formula:

E[𝜏𝑀 ] ≈ 2𝜋√︀
|𝑉 ′′(0)𝑉 ′′(−1)|

𝑒Δ𝑉/𝐷,

for 𝑀 > 0 and ∆𝑉 = 𝑉 (0) − 𝑉 (−1) = 1/4 here.

[12]: mfpt_mc = np.array([sr.firstpassage.FirstPassageProcess(DoubleWell(D)).escapetime_
→˓avg(-1, 0, 0.5, ntraj=1000)

for D in 1./np.arange(1, 11)])

[13]: ax = plt.axes(xlabel=r'$1/D$', ylabel=r'$\mathbb{E}[\tau_M]$', yscale='log', ylim=(1,
→˓100))
ax.scatter(np.arange(1, 11), mfpt_mc, label='MC');
invD = np.linspace(1, 10)
ax.plot(invD, np.array([sr.firstpassage.FirstPassageProcess(DoubleWell(D)).
→˓firstpassagetime_avg_theory(-1, 0.5)

for D in 1./invD])[:, 1, 0], label='Theory', color='C1')
ax.plot(invD, np.sqrt(2)*np.pi*np.exp(0.25*invD), label='Eyring-Kramers', color='C2')
ax.legend();

The code also allows for computing the mean first passage time using the Fokker-Planck equation or its adjoint. We
will soon update this notebook to show this method.

One could also show how the prefactor of the first-passage time depends on the threshold 𝑀 (above we chose 𝑀 =
0.5), for a fixed noise amplitude 𝐷. For 𝐷 small enough, there is a sharp transition around 𝑀 = 0, and the first-passage
time depends very little on 𝑀 away from this boundary layer (and it is given by the above Eyring-Kramers formula).
In general, the expression of the first-passage time is always given by the integral formula before the saddle-point
approximation.

Finally, these transitions can also be characterized using the instanton formalism. We shall also illustrate this in a
future version of the notebook.
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2.4 Return times with rare event algorithms

This tutorial demonstrates some of the features of the stochrare package for rare event simulation.

As an example, we show how to compute return times using the block maximum method (a standard method applicable
to any time series) and using a particular rare event algorithm, the Adaptive Multilevel Splitting algorithm.

Let us first import the modules:

[1]: %matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import stochrare as sr
np.random.seed(seed=100)

As an illustration, we shall work with a very simple stochastic process, the Ornstein-Uhlenbeck process in 1D:

[2]: oup = sr.dynamics.diffusion1d.OrnsteinUhlenbeck1D(0, 1, 0.5)

We simulate a realization 𝑥(𝑡) of this process with many samples:

[3]: %%time
reftraj = oup.trajectory(0., 0., T=10000)

CPU times: user 1.31 s, sys: 25 ms, total: 1.34 s
Wall time: 1.32 s

We are interested in rare events corresponding to extreme values of the process. For instance, we represent below
occurrences when the signal reaches a certain threshold 𝑎.

[4]: _, ax = sr.io.plot.trajectory_plot1d((reftraj[0][:10000], reftraj[1][:10000]));
ax.axhline(y=0.7, color='C3', ls='dashed');

Such events may be characterized by their probability of occurrence per unit time. Conversely, one may consider the
typical time associated with the event, for instance by looking at the average time between two successive independent
events. When the events are rare enough (i.e. the threshold 𝑎 is sufficiently large), the two quantities are inverse of
each other. The event follow Poisson statistics, and the parameter of the Poisson distribution is the inverse of the
average time between two successive independent events. This time is called the return time of the event. It is a very
useful metric to quantify rare events. In this notebook, we show how to compute the return time 𝑟(𝑎) as a function of
the amplitude 𝑎 of the event using different methods.
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This tutorial is inspired from the paper:

Computing return times or return periods with rare event algorithms, T. Lestang, F. Ragone, C.-E. Bréhier, C. Herbert
and F. Bouchet, J. Stat. Mech. (2018).

2.4.1 Return times with the block maximum method

The idea of the block maximum method is to divide the trajectory into 𝑀 blocks of duration ∆𝑇 (so that the total
length of the trajectory is 𝑇𝑑 = 𝑀∆𝑇 ) much larger than the correlation time of the timeseries 𝜏𝑐 (to make sure that
the events are independent). On each block, the maximum value is computed:

𝑎𝑚 = max{𝑥(𝑡)‖(𝑚− 1)∆𝑇 ≤ 𝑡 ≤ 𝑚∆𝑇}.

To the largest of these values, we associate a return time 𝑇𝑑, to the second largest value we associate a return time
𝑇𝑑/2, and so on.

This procedure is implemented in the stochrare.timeseries.blockmaximum routine. In addition to the time
series itself, the block size ∆𝑇 should be given to the routine. It should be chosen such that 𝜏𝑐 ≪ ∆𝑇 ≪ 𝑟(𝑎).

[5]: %%time
aref, rref = zip(*sr.timeseries.blockmaximum(reftraj[1], 1000, mode='returntime',
→˓time=reftraj[0], modified=True))

CPU times: user 12 ms, sys: 5.31 ms, total: 17.3 ms
Wall time: 13.4 ms

[6]: ax = plt.axes(xlabel=r'$r(a)$', ylabel=r'$a$', xscale='log')
ax.plot(rref, aref);

2.4.2 Return times with the Adaptive Multilevel Splitting algorithm

As explained in Lestang et al. (2019), the method can be extended to non-equiprobable blocks like trajectories simu-
lated by rare event algorithms.

As an example, we use the Trajectory Adaptive Multilevel Splitting algorithm, which is defined by a score function
(below it is just the identity) and a fixed length for trajectories (equal to 5 below). The idea of the algorithm is to
evolve an ensemble of trajectories through selection-mutation steps. At each iteration, the poorest performers of the

2.4. Return times with rare event algorithms 23



StochRare

ensemble (measured by the score function) are killed and replaced by a copy of a surviving trajectory resampled from
the point where it reached the maximum score function level obtained by the killed trajectory.

We first define the TAMS object, which requires a dynamics, a score function and the duration for trajectories:

[7]: tams = sr.rare.ams.TAMS(oup, (lambda t, x: x), 5.)

Then, we run the algorithm. Here we use directly the returntimes method, which samples trajectories by running
the algorithm and then computes the corresponding return times. The method takes as arguments the number of
member of the initial ensemble (here 100), and the number of iterations for the algorithm (here 600).

[8]: %%time
aams, rams = tams.returntimes(100, 600)

CPU times: user 726 ms, sys: 6.14 ms, total: 732 ms
Wall time: 732 ms

Let us compare the solution to the one obtained with the Block Maximum method:

[9]: ax = plt.axes(xlabel=r'$r(a)$', ylabel=r'$a$', xscale='log')
ax.plot(rref, aref, label='Block Maximum');
ax.plot(rams, aams, label='TAMS');
ax.legend();

In this simple example, for a similar computational cost, the AMS algorithm allows to estimate return times 7 orders
of magnitude larger than the Block Maximum method. This depends on the realization, and to properly characterize
the performance of the AMS algorithm one would need to study the statistics over an ensemble of realizations.

2.4.3 Applications of the rare event algorithms

For more information about application of the algorithm shown here to sample efficiently rare events, we refer the
reader to the following articles:

• F. Cérou, A. Guyader, T. Lelièvre and D. Pommier, J. Chem. Phys. 134, 054108 (2011).

• J. Rolland, F. Bouchet and E. Simonnet, J. Stat. Phys. 162, 277–311 (2015).

• F. Ragone, J. Wouters and F. Bouchet, Proc. Nat. Acad. Sci. 115, 24-29 (2018).

• T. Lestang, F. Ragone, C.-E. Bréhier, C. Herbert and F. Bouchet, J. Stat. Mech. (2018).
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• J. Rolland, Phys. Rev. E 97, 023109 (2018).

• F. Bouchet, J. Rolland and E. Simonnet, Phys. Rev. Lett. 122, 074502 (2019).

In addition, a recent review of the AMS algorithm can be found here:

• F. Cérou, A. Guyader, and M. Rousset, Chaos 29, 043108 (2019).
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CHAPTER 3

API Reference

stochrare is organized in several modules serving different purposes:

stochrare.dynamics Sample stochastic processes
stochrare.fokkerplanck Numerical solvers for the Fokker-Planck equations
stochrare.firstpassage First-passage processes
stochrare.rare Rare event algorithms
stochrare.io Input/Output
stochrare.utils Utilities

3.1 stochrare.dynamics

3.1.1 Sample stochastic processes

This is the core module of stochrare. It contains submodules for simulating trajectories corresponding to different
stochastic dynamics.

For now, only diffusion processes are available.

diffusion Simulating diffusion processes in arbitrary dimensions
diffusion1d Simulating 1D diffusion processes

stochrare.dynamics.diffusion

Simulating diffusion processes in arbitrary dimensions

This module defines the DiffusionProcess class, representing generic diffusion processes with arbitrary drift and dif-
fusion coefficients, in arbitrary dimension.

This class can be subclassed for specific diffusion processes for which methods can be specialized, both to simplify
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the code (e.g. directly enter analytical formulae when they are available) and for performance. As an exemple of
this mechanism, we also provide in this module the ConstantDiffusionProcess class, for which the diffusion term is
constant and proportional to the identity matrix, the OrnsteinUhlenbeck class representing the particular case of the
Ornstein-Uhlenbeck process, and the Wiener class corresponding to Brownian motion. These classes form a hierarchy
deriving from the base class, DiffusionProcess.

class stochrare.dynamics.diffusion.DiffusionProcess(vecfield, sigma, **kwargs)
Bases: object

Generic class for diffusion processes in arbitrary dimensions.

It corresponds to the family of SDEs 𝑑𝑥𝑡 = 𝐹 (𝑥𝑡, 𝑡)𝑑𝑡 + 𝜎(𝑥𝑡, 𝑡)𝑑𝑊𝑡, where 𝐹 is a time-dependent 𝑁 -
dimensional vector field and 𝑊 the 𝑀 -dimensional Wiener process. The diffusion matrix sigma has size NxM.

Parameters

• vecfield (function with two arguments) – The vector field 𝐹 (𝑥, 𝑡).

• sigma (function with two arguments) – The diffusion coefficient 𝜎(𝑥, 𝑡).

update(xn, tn, **kwargs)
Return the next sample for the time-discretized process.

Parameters

• xn (ndarray) – A n-dimensional vector (in R𝑛).

• tn (float) – The current time.

Keyword Arguments

• dt (float) – The time step.

• dw (ndarray) – The brownian increment if precomputed. By default, it is generated on
the fly from a Gaussian distribution with variance 𝑑𝑡.

Returns x – The position at time tn+dt.

Return type ndarray

Notes

This method uses the Euler-Maruyama method12: 𝑥𝑛+1 = 𝑥𝑛+𝐹 (𝑥𝑛, 𝑡𝑛)∆𝑡+𝜎(𝑥𝑛, 𝑡𝑛)∆𝑊𝑛, for a fixed
time step ∆𝑡, where ∆𝑊𝑛 is a random vector distributed according to the standard normal distribution12.

It is the straightforward generalization to SDEs of the Euler method for ODEs.

The Euler-Maruyama method has strong order 0.5 and weak order 1.

References

trajectory(x0, t0, **kwargs)
Integrate the SDE with given initial condition.

Parameters

• x0 (ndarray) – The initial position (in R𝑛).

• t0 (float) – The initial time.

Keyword Arguments
1 G. Maruyama, “Continuous Markov processes and stochastic equations”, Rend. Circ. Mat. Palermo 4, 48-90 (1955).
2 P. E. Kloeden and E. Platen, “Numerical solution of stochastic differential equations”, Springer (1992).
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• dt (float) – The time step, forwarded to the update() routine (default 0.1, unless
overridden by a subclass).

• T (float) – The time duration of the trajectory (default 10).

• finite (bool) – Filter finite values before returning trajectory (default False).

Returns t, x – Time-discrete sample path for the stochastic process with initial conditions (t0,
x0). The array t contains the time discretization and x the value of the sample path at these
instants.

Return type ndarray, ndarray

trajectory_generator(x0, t0, nsteps, **kwargs)
Integrate the SDE with given initial condition, generator version.

Parameters

• x0 (ndarray) – The initial position (in R𝑛).

• t0 (float) – The initial time.

• nsteps (int) – The number of samples to generate.

Keyword Arguments

• dt (float) – The time step, forwarded to the update() routine (default 0.1, unless
overridden by a subclass).

• observable (function with two arguments) – Time-dependent observable
𝑂(𝑥, 𝑡) to compute (default 𝑂(𝑥, 𝑡) = 𝑥)

Yields t, y (ndarray, ndarray) – Time-discrete sample path (or observable) for the stochastic
process with initial conditions (t0, x0). The array t contains the time discretization and
y=O(x, t) the value of the observable (it may be the stochastic process itself) at these instants.

sample_mean(x0, t0, nsteps, nsamples, **kwargs)
Compute the sample mean of a time dependent observable, conditioned on initial conditions.

Parameters

• x0 (ndarray) – The initial position (in R𝑛).

• t0 (float) – The initial time.

• nsteps (int) – The number of samples in each sample path.

• nsamples (int) – The number of sample paths in the ensemble.

Keyword Arguments

• dt (float) – The time step, forwarded to the update() routine (default 0.1, unless
overridden by a subclass).

• observable (function with two arguments) – Time-dependent observable
𝑂(𝑥, 𝑡) to compute (default 𝑂(𝑥, 𝑡) = 𝑥)

Yields t, y (ndarray, ndarray) – Time-discrete ensemble mean for the observable, conditioned on
the initial conditions (t0, x0). The array t contains the time discretization and 𝑦 = E[𝑂(𝑥, 𝑡)]
the value of the sample mean of the observable (it may be the stochastic process itself) at
these instants.

class stochrare.dynamics.diffusion.ConstantDiffusionProcess(vecfield, Damp, dim,
**kwargs)

Bases: stochrare.dynamics.diffusion.DiffusionProcess

Diffusion processes, in arbitrary dimensions, with constant diffusion coefficient.
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It corresponds to the family of SDEs 𝑑𝑥𝑡 = 𝐹 (𝑥𝑡, 𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡, where 𝐹 is a time-dependent 𝑁 -dimensional
vector field and 𝑊 the 𝑁 -dimensional Wiener process. The diffusion coefficient 𝜎 is independent of the stochas-
tic process (additive noise) and time, and we further assume that it is proportional to the identity matrix: all the
components of the noise are independent.

Parameters

• vecfield (function with two arguments) – The vector field 𝐹 (𝑥, 𝑡).

• Damp (float) – The amplitude of the noise.

• dim (int) – The dimension of the system.

Notes

The diffusion coefficient is given by 𝜎 =
√

2Damp. This convention leads to simpler expressions, for instance
for the Fokker-Planck equations.

update(xn, tn, **kwargs)
Return the next sample for the time-discretized process.

Parameters

• xn (ndarray) – A n-dimensional vector (in R𝑛).

• tn (float) – The current time.

Keyword Arguments

• dt (float) – The time step.

• dw (ndarray) – The brownian increment if precomputed. By default, it is generated on
the fly from a Gaussian distribution with variance 𝑑𝑡.

Returns x – The position at time tn+dt.

Return type ndarray

See also:

DiffusionProcess.update() for details about the Euler-Maruyama method.

Notes

This is the same as the DiffusionProcess.update() method from the parent class
DiffusionProcess, except that a matrix product is no longer necessary.

class stochrare.dynamics.diffusion.OrnsteinUhlenbeck(mu, theta, D, dim, **kwargs)
Bases: stochrare.dynamics.diffusion.ConstantDiffusionProcess

The Ornstein-Uhlenbeck process, in arbitrary dimensions.

It corresponds to the SDE 𝑑𝑥𝑡 = 𝜃(𝜇 − 𝑥𝑡)𝑑𝑡 +
√

2𝐷𝑑𝑊𝑡, where 𝜃 > 0 and 𝜇 ∈ R𝑛 are arbitrary coefficients
and 𝐷 > 0 is the amplitude of the noise.

Parameters

• mu (ndarray) – The expectation value.

• theta (float) – The inverse of the relaxation time.

• D (float) – The amplitude of the noise.

• dim (int) – The dimension of the system.
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Notes

The Ornstein-Uhlenbeck process has been used to model many systems. It was initially introduced to describe
the motion of a massive Brownian particle with friction3 . It may also be seen as a diffusion process in a
harmonic potential.

Because many of its properties can be computed analytically, it provides a useful toy model for developing new
methods.

References

potential(x)
Compute the potential from which the force derives.

Parameters x (ndarray) – The point where we want to compute the potential

Returns V – The potential from which the force derives, at the given point.

Return type float

Notes

Not all diffusion processes derive from a potential, but the Ornstein Uhlenbeck does. It is a gradient
system, with a quadratic potential: 𝑑𝑥𝑡 = −∇𝑉 (𝑥𝑡)𝑑𝑡 +

√
2𝐷𝑑𝑊𝑡, with 𝑉 (𝑥) = 𝜃(𝜇− 𝑥)2/2.

class stochrare.dynamics.diffusion.Wiener(dim, D=1, **kwargs)
Bases: stochrare.dynamics.diffusion.OrnsteinUhlenbeck

The Wiener process, in arbitrary dimensions.

Parameters

• dim (int) – The dimension of the system.

• D (float, optional) – The amplitude of the noise (default is 1).

Notes

The Wiener process is a central object in the theory or stochastic processes, both from a mathematical point of
view and for its applications in different scientific fields. We refer to classical textbooks for more information
about the Wiener process and Brownian motion.

classmethod potential(x)
Compute the potential from which the force derives.

Parameters x (ndarray) – The point where we want to compute the potential.

Returns V – The potential from which the force derives, at the given point.

Return type float

Notes

The Wiener Process is a trivial gradient system, with vanishing potential. It is useless (and potentially
source of errors) to call the general potential routine, so we just return zero directly.

3 G. E. Uhlenbeck and L. S. Ornstein, “On the theory of Brownian Motion”. Phys. Rev. 36, 823–841 (1930).
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Classes

ConstantDiffusionProcess(vecfield, Damp,
. . . )

Diffusion processes, in arbitrary dimensions, with con-
stant diffusion coefficient.

DiffusionProcess(vecfield, sigma, **kwargs) Generic class for diffusion processes in arbitrary dimen-
sions.

OrnsteinUhlenbeck(mu, theta, D, dim, **kwargs) The Ornstein-Uhlenbeck process, in arbitrary dimen-
sions.

Wiener(dim[, D]) The Wiener process, in arbitrary dimensions.

stochrare.dynamics.diffusion1d

Simulating 1D diffusion processes

This module defines the DiffusionProcess1D class, representing diffusion processes with arbitrary drift and diffusion
coefficients in 1D.

This class can be subclassed for specific diffusion processes for which methods can be specialized, both to simplify
the code (e.g. directly enter analytical formulae when they are available) and for performance. As an exemple of this
mechanism, we also provide in this module the ConstantDiffusionProcess1D class, for which the diffusion term is
constant (additive noise), the OrnsteinUhlenbeck1D class representing the particular case of the Ornstein-Uhlenbeck
process, and the Wiener1D class corresponding to Brownian motion. These classes form a hierarchy deriving from the
base class, DiffusionProcess1D.

class stochrare.dynamics.diffusion1d.DiffusionProcess1D(vecfield, sigma, **kwargs)
Bases: object

Generic class for 1D diffusion processes.

It corresponds to the family of 1D SDEs 𝑑𝑥𝑡 = 𝐹 (𝑥𝑡, 𝑡)𝑑𝑡 + 𝜎(𝑥𝑡, 𝑡)𝑑𝑊𝑡, where 𝐹 is a time-dependent vector
field and 𝑊 the Wiener process.

Parameters

• vecfield (function with two arguments) – The vector field 𝐹 (𝑥, 𝑡).

• sigma (function with two arguments) – The diffusion coefficient 𝜎(𝑥, 𝑡).

potential(X, t)
Compute the potential from which the force derives.

Parameters X (ndarray) – The points where we want to compute the potential.

Returns V – The potential from which the force derives, at the given points.

Return type ndarray

Notes

We integrate the vector field to obtain the value of the underlying potential at the input points. Caveat:
This works only for 1D dynamics.

update(xn, tn, **kwargs)
Return the next sample for the time-discretized process.

Parameters

• xn (float) – The current position.
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• tn (float) – The current time.

Keyword Arguments

• dt (float) – The time step (default 0.1 if not overriden by a subclass).

• dw (float) – The brownian increment if precomputed. By default, it is generated on the
fly from a Gaussian distribution with variance 𝑑𝑡.

Returns x – The position at time tn+dt.

Return type float

Notes

This method uses the Euler-Maruyama method12: 𝑥𝑛+1 = 𝑥𝑛 + 𝐹 (𝑥𝑛, 𝑡𝑛)∆𝑡 + 𝜎(𝑥𝑛, 𝑡𝑛)∆𝑊𝑛.

It is the straightforward generalization to SDEs of the Euler method for ODEs.

The Euler-Maruyama method has strong order 0.5 and weak order 1.

References

trajectory(x0, t0, **kwargs)
Integrate the SDE with given initial condition.

Parameters

• x0 (float) – The initial position.

• t0 (float) – The initial time.

Keyword Arguments

• dt (float) – The time step, forwarded to the update() routine (default 0.1, unless
overridden by a subclass).

• T (float) – The time duration of the trajectory (default 10).

• brownian_path ((ndarray, ndarray)) – A precomputed Brownian path with
respect to which we integrate the SDE. If not provided (default behavior), one will be
computed one the fly.

• deltat (float) – The time step for the Brownian path, when generated on the fly
(default: dt).

• finite (bool) – Filter finite values before returning trajectory (default False).

Returns t, x – Time-discrete sample path for the stochastic process with initial conditions (t0,
x0). The array t contains the time discretization and x the value of the sample path at these
instants.

Return type ndarray, ndarray

trajectory_conditional(x0, t0, pred, **kwargs)
Compute sample path satisfying arbitrary condition.

Parameters

• x0 (float) – The initial position.

1 G. Maruyama, Continuous Markov processes and stochastic equations, Rend. Circ. Mat. Palermo 4, 48-90 (1955).
2 P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer (1992).
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• t0 (float) – The initial time.

• pred (function with two arguments) – The predicate to select trajectories.

Keyword Arguments

• dt (float) – The time step, forwarded to the update() routine (default 0.1, unless
overridden by a subclass).

• T (float) – The time duration of the trajectory (default 10).

• finite (bool) – Filter finite values before returning trajectory (default False).

Returns t, x – Time-discrete sample path for the stochastic process with initial conditions (t0,
x0). The array t contains the time discretization and x the value of the sample path at these
instants.

Return type ndarray, ndarray

empirical_vector(x0, t0, nsamples, *args, **kwargs)
Empirical vector at given times.

Parameters

• x0 (float) – Initial position.

• t0 (float) – Initial time.

• nsamples (int) – The size of the ensemble.

• *args (variable length argument list) – The times at which we want to
estimate the empirical vector.

Keyword Arguments **kwargs – Keyword arguments forwarded to trajectory() and to
numpy.histogram().

Yields t, pdf, bins (float, ndarray, ndarray) – The time and histogram of the stochastic process
at that time.

Notes

This method computes the empirical vector, or in other words, the relative frequency of the stochastic
process at different times, conditioned on the initial condition. At each time, the empirical vector is a
random vector. It is an estimator of the transition probability 𝑝(𝑥, 𝑡|𝑥0, 𝑡0).

classmethod trajectoryplot(*args, **kwargs)
Plot 1D trajectories.

Parameters

• *args (variable length argument list) –

• trajs (tuple (t, x)) –

Keyword Arguments

• fig (matplotlig.figure.Figure) – Figure object to use for the plot. Create one
if not provided.

• ax (matplotlig.axes.Axes) – Axes object to use for the plot. Create one if not
provided.

• **kwargs – Other keyword arguments forwarded to matplotlib.pyplot.axes.

Returns fig, ax – The figure.
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Return type matplotlib.figure.Figure, matplotlib.axes.Axes

Notes

This is just an interface to the function stochrare.io.plot.trajectory_plot1d(). However,
it may be overwritten in subclasses to systematically include elements to the plot which are specific to the
stochastic process.

class stochrare.dynamics.diffusion1d.ConstantDiffusionProcess1D(vecfield,
Damp,
**kwargs)

Bases: stochrare.dynamics.diffusion1d.DiffusionProcess1D

Diffusion processes in 1D with constant diffusion coefficient (additive noise).

It corresponds to the family of SDEs 𝑑𝑥𝑡 = 𝐹 (𝑥𝑡, 𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡, where 𝐹 is a time-dependent vector field and
𝑊 the Wiener process. The diffusion coefficient 𝜎 is independent of space and time.

Parameters

• vecfield (function with two arguments) – The vector field 𝐹 (𝑥, 𝑡).

• Damp (float) – The amplitude of the noise.

Notes

The diffusion coefficient is given by 𝜎 =
√

2Damp. This convention leads to simpler expressions, for instance
for the Fokker-Planck equations.

update(xn, tn, **kwargs)
Return the next sample for the time-discretized process.

Parameters

• xn (float) – The current position.

• tn (float) – The current time.

Keyword Arguments

• dt (float) – The time step (default 0.1 if not overriden by a subclass).

• dw (float) – The brownian increment if precomputed. By default, it is generated on the
fly from a Gaussian distribution with variance 𝑑𝑡.

Returns x – The position at time tn+dt.

Return type float

Notes

This method uses the Euler-Maruyama method34: 𝑥𝑛+1 = 𝑥𝑛 + 𝐹 (𝑥𝑛, 𝑡𝑛)∆𝑡 +
√

2𝐷∆𝑊𝑛.

3 G. Maruyama, Continuous Markov processes and stochastic equations, Rend. Circ. Mat. Palermo 4, 48-90 (1955).
4 P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer (1992).
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References

traj_cond_gen(x0, t0, tau, M, **kwargs)
Generate trajectories conditioned on the first-passage time tau at value M.

Parameters

• x0 (float) – Initial position.

• t0 (float) – Initial time.

• tau (float) – The value of the first passage time required.

• M (float) – The threshold for the first passage time.

Keyword Arguments

• dt (float) – The integration timestep (default is self.default_dt).

• ttol (float) – The first-passage time tolerance (default is 1% of trajectory duration).

• num (int) – The number of trajectories generated (default is 10).

• interp (bool) – Interpolate to generate unifomly sampled trajectories.

• npts (int) – The number of points for interpolated trajectories (default (tau-t0)/dt).

Yields t, x (ndarray, ndarray) – Trajectories satisfying the condition on the first passage time.

pdfplot(*args, **kwargs)
Plot the pdf P(x,t) at various times.

Parameters args (variable length argument list) – The times at which to plot
the PDF.

Keyword Arguments

• t0 (float) – Initial time.

• potential (bool) – Plot potential on top of PDF.

• th (bool) – Plot theoretical solution, if it exists, on top of PDF.

action(*args)
Compute the action for all the trajectories given as arguments

class stochrare.dynamics.diffusion1d.OrnsteinUhlenbeck1D(mu, theta, D, **kwargs)
Bases: stochrare.dynamics.diffusion1d.ConstantDiffusionProcess1D

The 1D Ornstein-Uhlenbeck process.

It corresponds to the SDE 𝑑𝑥𝑡 = 𝜃(𝜇 − 𝑥𝑡)𝑑𝑡 +
√

2𝐷𝑑𝑊𝑡, where 𝜃 > 0 and 𝜇 are arbitrary coefficients and
𝐷 > 0 is the amplitude of the noise.

Parameters

• mu (float) – The expectation value.

• theta (float) – The inverse of the relaxation time.

• D (float) – The amplitude of the noise.
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Notes

The Ornstein-Uhlenbeck process has been used to model many systems. It was initially introduced to describe
the motion of a massive Brownian particle with friction5 . It may also be seen as a diffusion process in a
harmonic potential.

Because many of its properties can be computed analytically, it provides a useful toy model for developing new
methods.

References

update(xn, tn, **kwargs)
Return the next sample for the time-discretized process, using the Gillespie method.

Parameters

• xn (float) – The current position.

• tn (float) – The current time.

Keyword Arguments

• dt (float) – The time step (default 0.1 if not overriden by a subclass).

• dw (float) – The brownian increment if precomputed. By default, it is generated on the
fly from a standard Gaussian distribution.

• method (str) – The numerical method for integration: ‘gillespie’ (default) or ‘euler’.

Returns x – The position at time tn+dt.

Return type float

Notes

For the Ornstein-Uhlenbeck process, there is an exact method, the Gillespie algorithm6. This method
is selected by default. If necessary, the Euler-Maruyama method can still be chosen using the method
keyword argument.

References

mean_firstpassage_time(x0, a)
Return the mean first-passage time for the 1D Ornstein-Uhlenbeck process (exact formula).

Parameters

• x0 (float) – Initial position

• a (float) – Threshold

Returns tau – Mean first-passage time

Return type float

5 G. E. Uhlenbeck and L. S. Ornstein, “On the theory of Brownian Motion”. Phys. Rev. 36, 823–841 (1930).
6 D. T. Gillespie, Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral, Phys. Rev. E 54, 2084 (1996).
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Notes

The first passage time is defined by 𝜏𝑎(𝑥0) = inf{𝑡 > 0, 𝑋𝑡 > 𝑎|𝑋0 = 𝑥0}. It is a random variable. Here,
we compute only its expectation value, for which an analytical formula is known.

General methods for first-passage time conputations are avaiblable in the stochrare.firstpassage module.

class stochrare.dynamics.diffusion1d.Wiener1D(D=1, **kwargs)
Bases: stochrare.dynamics.diffusion1d.OrnsteinUhlenbeck1D

The 1D Wiener process.

Parameters D (float, optional) – The amplitude of the noise (default is 1).

Notes

The Wiener process is a central object in the theory or stochastic processes, both from a mathematical point of
view and for its applications in different scientific fields. We refer to classical textbooks for more information
about the Wiener process and Brownian motion.

classmethod potential(X)
Compute the potential from which the force derives.

Parameters X (ndarray) – The points where we want to compute the potential.

Returns V – The potential from which the force derives, at the given points.

Return type float

Notes

The Wiener Process is a trivial gradient system, with vanishing potential. It is useless (and potentially
source of errors) to call the general potential routine, so we just return zero directly.

Classes

ConstantDiffusionProcess1D(vecfield,
Damp, . . . )

Diffusion processes in 1D with constant diffusion coef-
ficient (additive noise).

DiffusionProcess1D(vecfield, sigma, **kwargs) Generic class for 1D diffusion processes.
DrivenOrnsteinUhlenbeck1D(mu, theta, D, A,
. . . )

The 1D Ornstein-Uhlenbeck model driven by a periodic
forcing:

OrnsteinUhlenbeck1D(mu, theta, D, **kwargs) The 1D Ornstein-Uhlenbeck process.
Wiener1D([D]) The 1D Wiener process.

3.2 stochrare.fokkerplanck

3.2.1 Numerical solvers for the Fokker-Planck equations

This module contains numerical solvers for the Fokker-Planck equations associated to diffusion processes.

For now, it only contains a basic finite difference solver for the 1D case.

class stochrare.fokkerplanck.FokkerPlanck1DAbstract(drift, diffusion)
Bases: object
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Abstract class for 1D Fokker-Planck equations solvers.

Parameters

• drift (function with two variables) – The drift coefficient 𝑎(𝑥, 𝑡).

• diffusion (function with two variables) – The diffusion coefficient 𝐷(𝑥, 𝑡).

Notes

This is just the legacy code which was migrated from the stochrare.dynamics.
DiffusionProcess1D class. It should be rewritten with a better structure. In particular, it only
works with a constant diffusion for now.

classmethod gaussian1d(mean, std, X)
Return a 1D Gaussian pdf.

Parameters

• mean (float) –

• std (float) –

• X (ndarray) – The sample points.

Returns pdf – The Gaussian pdf at the sample points.

Return type ndarray

classmethod dirac1d(pos, X)
Return a PDF for a certain event.

Parameters

• pos (float) – The value occurring with probability one.

• X (ndarray) – The sample points.

Returns pdf – The pdf at the sample points.

Return type ndarray

Notes

The method actually returns a vector with a one at the first sample point larger than pos.

classmethod uniform1d(X)
Return a uniform PDF.

Parameters X (ndarray) – The sample points.

Returns pdf – The pdf at the sample points.

Return type ndarray

fpintegrate(t0, T, **kwargs)
Numerical integration of the associated Fokker-Planck equation, or its adjoint.

Parameters

• t0 (float) – Initial time.

• T (float) – Integration time.

Keyword Arguments
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• bounds (float 2-tuple) – Domain where we should solve the equation (default (-
10.0, 10.0))

• npts (ints) – Number of discretization points in the domain (i.e. spatial resolution).
Default: 100.

• dt (float) – Timestep (default choice suitable for the heat equation with forward
scheme)

• bc (stochrare.edpy.BoundaryCondition object or tuple) – Boundary
conditions (either a BoundaryCondition object or a tuple sent to _fpbc)

• method (str) – Numerical scheme: explicit (‘euler’, default), implicit, or crank-
nicolson

• P0 (ndarray) – Initial condition (default is a standard normal distribution).

Returns t, X, P – Final time, sample points and solution of the Fokker-Planck equation at the
sample points.

Return type float, ndarray, ndarray

fpintegrate_generator(*args, **kwargs)
Numerical integration of the associated Fokker-Planck equation, generator version.

Parameters *args (variable length argument list) – Times at which to yield the
pdf.

Yields t, X, P (float, ndarray, ndarray) – Time, sample points and solution of the Fokker-Planck
equation at the sample points.

class stochrare.fokkerplanck.FokkerPlanck1D(drift, diffusion)
Bases: stochrare.fokkerplanck.FokkerPlanck1DAbstract

Solver for the 1D Fokker-Planck equation.

𝜕𝑡𝑃 (𝑥, 𝑡) = −𝜕𝑥𝑎(𝑥, 𝑡)𝑃 (𝑥, 𝑡) + 𝜕2
𝑥𝑥𝐷(𝑥, 𝑡)𝑃 (𝑥, 𝑡)

Parameters

• drift (function with two variables) – The drift coefficient 𝑎(𝑥, 𝑡).

• diffusion (function with two variables) – The diffusion coefficient 𝐷(𝑥, 𝑡).

Notes

This is just the legacy code which was migrated from the stochrare.dynamics.
DiffusionProcess1D class. It should be rewritten with a better structure.

classmethod from_sde(model)
Construct and return a Fokker-Planck object from a DiffusionProcess object. The only thing this construc-
tor does is define the diffusion coefficient 𝐷(𝑥, 𝑡) from the diffusion of the stochastic process 𝜎(𝑥, 𝑡) as
𝐷(𝑥, 𝑡) = 𝜎(𝑥, 𝑡)2/2.

class stochrare.fokkerplanck.FokkerPlanck1DBackward(drift, diffusion)
Bases: stochrare.fokkerplanck.FokkerPlanck1DAbstract

Solver for the adjoint Fokker-Planck equation.

𝜕𝑡𝑃 (𝑥, 𝑡) = 𝑎(𝑥, 𝑡)𝜕𝑥𝑃 (𝑥, 𝑡) + 𝐷(𝑥, 𝑡)𝜕2
𝑥𝑥𝑃 (𝑥, 𝑡)

Parameters

• drift (function with two variables) – The drift coefficient 𝑎(𝑥, 𝑡).
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• diffusion (function with two variables) – The diffusion coefficient 𝐷(𝑥, 𝑡).

Classes

FokkerPlanck1D(drift, diffusion) Solver for the 1D Fokker-Planck equation.
FokkerPlanck1DAbstract(drift, diffusion) Abstract class for 1D Fokker-Planck equations solvers.
FokkerPlanck1DBackward(drift, diffusion) Solver for the adjoint Fokker-Planck equation.
ShortTimePropagator(drift, diffusion, tau) Solver for the Fokker-Planck equation based on the

short-time expansion of the generator.

3.3 stochrare.firstpassage

3.3.1 First-passage processes

This module defines a class corresponding to the random variable defined as the first-passage time in a given set for a
given stochastic process.

class stochrare.firstpassage.FirstPassageProcess(model)
Bases: object

Represents a first-passage time random variable associated to a stochastic process and a given set.

Parameters

• model (stochrare.dynamics.DiffusionProcess1D) – The stochastic process
to which the first-passage time is associated

• CAUTION (methods only tested with ConstantDiffusionProcess1D
class, not DiffusionProcess1D!) –

firstpassagetime(x0, t0, A, **kwargs)
Computes the first passage time, defined by $ au_A = inf{t>t0 | x(t)>A}$, for one realization.

Parameters

• x0 (float) – The initial position

• t0 (float) – The initial time

• A (float) – The threshold

Returns t – A realization of the first-passage time

Return type float

escapetime_sample(x0, t0, A, **kwargs)
Computes realizations of the first passage time, defined by $ au_A = inf{t>t0 | x(t)>A}$, using direct
Monte-Carlo simulations. This method can be overwritten by subclasses to call compiled code for better
performance.

escapetime_avg(x0, t0, A, **kwargs)
Compute the average escape time for given initial condition (x0,t0) and threshold A

classmethod escapetime_pdf(samples, **kwargs)
Compute the probability distribution function of the first-passage time based on the input samples

classmethod escapetime_pdfplot(*args, **kwargs)
Plot previously computed pdf of first passage time
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firstpassagetime_cdf(x0, A, *args, **kwargs)
Computes the CDF of the first passage time, 𝑃𝑟𝑜𝑏𝑥0,𝑡0[𝑎𝑢𝐴 < 𝑡], or its derivatives, by solving the Fokker-
Planck equation.

firstpassagetime_cdf_adjoint(x0, A, *args, **kwargs)
Computes the CDF of the first passage time, 𝑃𝑟𝑜𝑏𝑥0,𝑡0[𝑎𝑢𝐴 < 𝑡], or its derivatives, by solving the adjoint
Fokker-Planck equation.

firstpassagetime_avg_theory(x0, *args, **kwargs)
Compute the mean first-passage time using the theoretical formula:

E[𝜏𝑀 ] = 1
𝐷

∫︀𝑀

𝑥0
𝑑𝑥𝑒𝑉 (𝑥)/𝐷

∫︀ 𝑥

−∞ 𝑒−𝑉 (𝑦)/𝐷𝑑𝑦.

This formula is valid for a homogeneous process, conditioned on the initial position 𝑥0.

Parameters x0 (float) – Initial position

firstpassagetime_avg_theory2(x0, *args, **kwargs)
Compute the mean first-passage time using the theoretical formula:

E[𝜏𝑀 ] = 1
𝐷

∫︀𝑀

𝑥0
𝑑𝑥𝑒𝑉 (𝑥)/𝐷

∫︀ 𝑥

−∞ 𝑒−𝑉 (𝑦)/𝐷𝑑𝑦.

This formula is valid for a homogeneous process, conditioned on the initial position 𝑥0.

Parameters x0 (float) – Initial position

Classes

FirstPassageProcess(model) Represents a first-passage time random variable associ-
ated to a stochastic process and a given set.

3.4 stochrare.rare

3.4.1 Rare event algorithms

This module contains numerical algorithms designed specifically to sample rare events.

For now, only algorithms of the Adaptive Multilevel Splitting family are implemented.

ams Rare event algorithms of the Adaptive Multilevel Split-
ting family

instanton Module for instanton computations.

stochrare.rare.ams

Rare event algorithms of the Adaptive Multilevel Splitting family

There are two kinds of variants of the AMS algorithms. On the one hand, there are “scientific” variants, corresponding
to different formulations of the algorithm (e.g. AMS vs TAMS). On the other hand, there are “technical” variants,
corresponding to different implementations: for instance, keeping all the trajectories in memory or storing them on
disk (necessary for applications to complex systems)

class stochrare.rare.ams.AMS(model, scorefun, initcond=<function AMS.<lambda>>)
Bases: object
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Original version of the Adaptive Multilevel Splitting Algorithm.

Parameters

• model (stochrare.dynamics.DiffusionProcess1D object (or a
subclass of it)) – The dynamical model; so far we are restricted to SDEs of
the form 𝑑𝑋𝑡 = 𝐹 (𝑋𝑡, 𝑡) +

√
2𝐷𝑑𝑊𝑡. We only use the stochrare.dynamics.

DiffusionProcess1D.update() method of the object.

• scorefun (function with two arguments) – The score function 𝜉(𝑡, 𝑥).

• initcond (function with no arguments, optional) – Function to generate
initial conditions. It can be for instance a constant: lambda: x0, t0 or generate random
initial conditions: lambda: np.random.random(), t0

Notes

The algorithm evolves an ensemble of trajectories in an interactive manner, using selection and mutation
steps1234. The algorithm requires two sets 𝐴 and 𝐵, and a reactive coordinate or score function 𝜉, measur-
ing the distance between the two. In fact, we require that 𝜉 vanishes over the boundary of 𝐴, and takes unit
value over the boundary of 𝐵.

• Initialization:

The ensemble is initialized by running 𝑁 trajectories until they reach set 𝐴 or set 𝐵.

• Selection

Then at each iteration, the maximum value of the score function over each member of the ensemble is computed.
The 𝑞 trajectories with lowest score function are killed.

• Mutation

For each trajectory killed, we pick a random trajectory among the survivors. We clone that trajectory until it
reaches the level of the killed trajectory for the first time, then we restart it from that point until it reaches set 𝐴
or 𝐵.

The algorithm is iterated until all trajectories reach set 𝐵.

References

getcrossingtime(level, times, traj)
Return the time and position at which the trajectory reaches a given threshold.

Parameters

• level (float) – The threshold.

• times (numpy.ndarray) – Sampling times for the trajectory.

• traj (numpy.ndarray) – Position of the system at the sampling times.

1

F. Cerou and A. Guyader, Stoch. Anal. Appl. 25, 417 (2007)

2

F. Cerou, A. Guyader, T. Lelievre and D. Pommier J. Chem. Phys. 134, 054108 (2011)

3

J. Rolland, F. Bouchet and E. Simonnet, J. Stat. Phys. 162, 277 (2016)

4 C.-E. Brehier, M. Gazeau, L. Goudenege, T. Lelievre and M. Rousset, Ann. Appl. Probab. 26, 3559 (2016)
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Returns t, x – The time and position at the crossing point.

Return type float, float

getlevel(times, traj)
Return the maximum reached by the score function over the trajectory.

Parameters

• times (numpy.ndarray) – Sampling times for the trajectory.

• traj (numpy.ndarray) – Position of the system at the sampling times.

Returns max – The maximum of the score function over the trajectory.

Return type float

resample(time, pos, told, xold, **kwargs)
Resample a killed trajectory after a given time.

Parameters

• time (float) – The time from which to resample.

• pos (float) – The position from which to resample.

• told (numpy.ndarray) – The sample times from the killed trajectory.

• xold (numpy.ndarray) – The killed trajectory.

Keyword Arguments **kwargs – Keyword arguments, forwarded to
simul_trajectory().

Returns tnew, xnew – The resampled trajectory.

Return type numpy.ndarray, numpy.ndarray

simul_trajectory(x0, t0, **kwargs)
Simulate a trajectory until it reaches either set A (score <= 0) or set B (score >= 1).

Parameters

• x0 (float) – Initial position.

• t0 (float) – Initial time.

Keyword Arguments dt (float) – The time step.

Returns t, x – The simulated trajectory.

Return type numpy.ndarray, numpy.ndarray

initialize_ensemble(ntraj, **kwargs)
Generate the initial ensemble.

Parameters ntraj (int) – Number of trajectories in the ensemble.

Keyword Arguments **kwargs – Keyword arguments forwarded to
simul_trajectory().

static selectionstep(levels, npart=1)
Selection step of the AMS algorithm.

Parameters

• levels (numpy.ndarray) – The list of levels reached by the ensemble members.
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• npart (int, optional) – The number of levels to select. npart=1 corresponds to
the last particle method. Note that one level can correspond to several trajectories in the
ensemble.

Returns killed, survivors – The indices of the killed and surviving ensemble members.

Return type numpy.ndarray, numpy.ndarray

Notes

Return the trajectories in the ensemble which performed worse, i.e. the trajectories for which the maximum
value of the score function over the trajectory is minimum.

mutationstep(killed_pool, survivor_pool, **kwargs)
Mutation step for the AMS algorithm.

Parameters

• killed_pool (array_like) – The indices of the ensemble members to kill.

• survivor_pool (array_like) – The indices of the ensemble members to keep.

Keyword Arguments **kwargs – Keyword arguments forwarded to resample().

Notes

This is the only method which modifies the state of the ensemble (the AMS object).

run_iter(ntraj, niter, **kwargs)
Generate trajectories with the AMS algorithm.

Parameters

• ntraj (int) – The number of trajectories in the initial ensemble.

• niter (int) – The number of iterations of the algorithm.

• Arguments (Keywords) –

• ------------------ –

• **kwargs – Keyword arguments passed to the “trajectory” method of the dynamics ob-
ject.

Yields trajectory, weight (numpy.ndarray, float) – The generator yields (trajectory, weight)
pairs which allows to compute easily the probability associated to each sampled trajectory.

Notes

This method yields first the killed trajectories as the algorithm is iterated, then the trajectories in the final
ensemble.

run_resamp(ntraj, niter, **kwargs)
Generate trajectories with the AMS algorithm.

Parameters

• ntraj (int) – The number of trajectories in the initial ensemble.

• niter (int) – The number of iterations of the algorithm.

• Arguments (Keywords) –
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• ------------------ –

• **kwargs – Keyword arguments passed to the “trajectory” method of the dynamics ob-
ject.

Yields trajectory, weight (numpy.ndarray, float) – The generator yields (trajectory, weight)
pairs which allows to compute easily the probability associated to each sampled trajectory.

Notes

This method yields first the trajectories in the initial ensemble, then the resampled trajectories as the
algorithm is iterated.

run_level(ntraj, target_lev, **kwargs)
Generate trajectories with the AMS algorithm.

Parameters

• ntraj (int) – The number of trajectories in the initial ensemble.

• target_lev (float) – The target level.

• Arguments (Keywords) –

• ------------------ –

• **kwargs – Keyword arguments passed to the “trajectory” method of the dynamics ob-
ject.

Yields trajectory, weight (numpy.ndarray, float) – The generator yields (trajectory, weight)
pairs which allows to compute easily the probability associated to each sampled trajectory.

Notes

This method yields first the killed trajectories as the algorithm is iterated, then the trajectories in the final
ensemble.

class stochrare.rare.ams.TAMS(model, scorefun, duration, **kwargs)
Bases: stochrare.rare.ams.AMS

Implement the TAMS algorithm5.

Parameters

• dynamics (stochrare.dynamics.StochModel object (or a subclass
of it)) – The dynamical model; so far we are restricted to SDEs of the form 𝑑𝑋𝑡 =
𝐹 (𝑋𝑡, 𝑡) +

√
2𝐷𝑑𝑊𝑡 We only use the trajectory method of the dynamics object.

• score (function with two arguments.) – The score function 𝜉(𝑡, 𝑥).

• duration (float) – The fixed duration for each trajectory.

Notes

This implementation keeps all the information in memory: this should not be suitable for complex dynamics.
Similarly, the algorithm is not parallelized, even if the dynamics itself may be.

5

T. Lestang, F. Ragone, C.-E. Brehier, C. Herbert and F. Bouchet, J. Stat. Mech. (2018)

46 Chapter 3. API Reference



StochRare

References

resample(time, pos, told, xold, **kwargs)
Resample a killed trajectory after a given time.

Parameters

• time (float) – The time from which to resample.

• pos (float) – The position from which to resample.

• told (numpy.ndarray) – The sample times from the killed trajectory.

• xold (numpy.ndarray) – The killed trajectory.

Keyword Arguments **kwargs – Keyword arguments, forwarded to
simul_trajectory().

Returns tnew, xnew – The resampled trajectory.

Return type numpy.ndarray, numpy.ndarray

simul_trajectory(x0, t0, **kwargs)
Simulate a trajectory with given initial conditions for a fixed duration.

Parameters

• x0 (float) – Initial position.

• t0 (float) – Initial time.

Keyword Arguments

• T (float) – The duration.

• dt (float) – The time step.

Returns t, x – The simulated trajectory.

Return type numpy.ndarray, numpy.ndarray

average(ntraj, niter, observable, **kwargs)
Estimate the average of an observable using AMS sampling.

Parameters

• ntraj (int) – The number of initial trajectories in the ensemble.

• niter (int) – The number of iterations of the AMS algorithm.

• observable (function with two arguments) – A function of the form O(t,
x), where t and x are numpy arrays. It should itself return a numpy array. For instance, it
could be a time-independent function of the type lambda t, x: x**2 or a functional
of the trajectory such as lambda t, x: np.array([np.max(x**2)]) Note that
in the latter case it is crucial to convert the scalar to an array.

Keyword Arguments

• method (function) – The method used to sample the trajectories with the AMS algo-
rithm. It can be one of run_iter() (default) or run_resamp().

• condition (function) – A predicate for conditional averaging. It should be of the
form pred((t,x)) in (True, False).

Returns obs – The expectation value of the observable.

Return type numpy.ndarray
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returntimes(ntraj, niter, **kwargs)
Estimate the return time of an observable using AMS sampling.

Parameters

• ntraj (int) – The number of initial trajectories in the ensemble.

• niter (int) – The number of iterations of the AMS algorithm.

Keyword Arguments

• method (function) – The method used to sample the trajectories with the AMS algo-
rithm. It can be one of run_iter() (default) or run_resamp().

• observable (function) – The time-dependent observable O(t, x). The default is the
score function.

Returns a, r(a) – The amplitude and associated return time using the generalized block-
maximum method.

Return type numpy.ndarray, numpy.ndarray

Classes

AMS(model, scorefun[, initcond]) Original version of the Adaptive Multilevel Splitting Al-
gorithm.

TAMS(model, scorefun, duration, **kwargs) Implement the TAMS algorithm5.

stochrare.rare.instanton

Module for instanton computations.

This relies on the path integral formalism for stochastic processes. The general idea is that sample paths have a
probability proportional to a factor e^{-S}, where S is the action. The expectation value of some observable can
therefore be expressed as an integral over all possible paths, weighted by this factor. This formalism was developed
initially in the following references: - L. Onsager and S. Machlup, Fluctuations and irreversible processes, Phys. Rev.
91, 1505 (1953). - S. Machlup and L. Onsager, Fluctuations and irreversible processes: II. systems with kinetic

energy, Phys. Rev. 91, 1512 (1953).

on the one hand and - P. C. Martin, E. D. Siggia and H. A. Rose, Statistical dynamics of classical systems,

Phys. Rev. A 8, 423 (1973).

• H. K. Janssen, On a Lagrangian for classical field dynamics and renormalization group calculations of dynamical
critical properties, Z. Phys. B 23, 377 (1976).

• C. de Dominicis, Techniques de renormalisation de la theorie des champs et dynamique des phenomenes cri-
tiques, J. Phys. C: Solid State Phys. 1, 247 (1976).

on the other hand.

The path integral may be evaluated using a saddle-point approximation. The instanton is the corresponding action
minimizer. On other words, it is the realization of the stochastic process which dominates the path integral. The
accurracy of this approximation is usually governed by a small parameter. Such a parameter appears naturally in the
Freidlin-Wentzell theory of large deviations. It considers dynamical systems perturbed by noise. When the amplitude
of the noise goes is weak, the probability of an event, depending on the stochastic process, satisfies a large deviation
pinciple. The rate function in this large deviation principle corresponds to the action. See - M. I. Freidlin and A. D.
Wentzell, Random Perturbations of Dynamical Systems, Springer (1998) for more details.
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To sum up, considering a rare event for a random dynamical system, the instanton corresponds to the typical path
which realizes the event.

Instantons can be computed directly by minimizing numerically the action or by solving the corresponding Hamilton
equations. However, in practice these methods are very inefficient, except for low dimensional systems. Many more
sophisticated methods have been designed for numerical computation of instantons, for instance:

• String method for gradient systems

• W. E, W. Ren and E. Vanden-Eijnden, String method for the study of rare events, Phys. Rev. B 66, 052301
(2002)

• W. Ren, W. E and E. Vanden-Eijden, Simplified and improved string method for computing the minimum energy
paths in barrier-crossing events, J. Chem. Phys. 126, 164103 (2007).

• Minimum action method

• W. E, W. Ren and E. Vanden-Eijnden, Minimum action method for the study of rare events, Commun. Pure
Appl. Math. 57, 637 (2004)

and related papers: - R. Olender and R. Elber, Calculation of classical trajectories with a very large time step:

formalism and numerical exemples, J. Chem. Phys. 105, 9299 (1996).

• X. Zhou, W. Ren and W. E, Adaptive minimum action method for the study of rare events, J. Chem. Phys. 128,
104111 (2008).

• W. E and X. Zhou, The gentlest ascent dynamics, Nonlinearity 24, 1831 (2011).

• X. Wan and G. Lin, Hybrid parallel computing of minimum action method, Parallel Comput. 39, 638 (2013).

• X. Wan, An adaptive high-order minimum action method, J. Comput. Phys. 230, 86669 (2011).

• M. Heymann and E. Vanden-Eijden, The geometric minimum action method: a least action principle on the
space of curves, Commun. Pure Appl. Math. 61, 1052 (2008).

• E. Vanden-Eijden and M. Heymann, The geometric minimum action method for computing minimum energy
paths, J. Chem. Phys. 128, 061103 (2008).

• M. Heymann and E. Vanden-Eijden, Pathways of maximum likelihood for rare events in nonequilibrium sys-
tems: application to nucleation in the presence of shear, Phys. Rev. Lett. 100, 140601 (2008).

• Chernykh-Stepanov algorithm

• A. I. Chernykh and M. G. Stepanov, Large negative velocity gradients in Burgers turbulence, Phys. Rev. E 64,
026306 (2001)

Instanton computation methods are also reviewed in - T. Grafke, R. Grauer and T. Schafer, The instanton method and
its numerical implementation in fluid mechanics, J. Phys. A: Math. Theor. 48, 333001 (2015).

For now, this module only implements direct instanton computation by solving the Hamilton equations. More efficient
methods shall be added to the module in the future.

Classes

InstantonSolver(model) Basic class for solving the instanton equations.
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3.5 stochrare.io

3.5.1 Input/Output

Stochpy generates two kinds of outputs: - data (results of computations that we wish to store on disk for future use) -
plots (results fo computations that we wish to represent in a graphic manner)

Hence the io module is organized into two submodules, stochrare.io.data and stochrare.io.plot.

data Data module
plot Plotting routines

stochrare.io.data

Data module

This module (to be written) should be used to store on disk the results of computations made with stochrare for future
use, and to load such files in a script or an interactive session.

The goal is not only to store the data, but also to include metadata to make it clear how the data was generated
originally.

stochrare.io.plot

Plotting routines

This module contains several functions for making quick plots.

stochrare.io.plot.trajectory_plot1d(*args, **kwargs)
Plot 1D trajectories.

Parameters *args (variable length argument list) – trajs: tuple (t, x) or (t, x,
kwargs_dict)

Keyword Arguments

• fig (matplotlig.figure.Figure) – Figure object to use for the plot. Create one if
not provided.

• ax (matplotlig.axes.Axes) – Axes object to use for the plot. Create one if not
provided.

• **kwargs – Other keyword arguments forwarded to matplotlib.pyplot.axes.

Returns fig, ax – The figure.

Return type matplotlib.figure.Figure, matplotlib.axes.Axes

stochrare.io.plot.pdf_plot1d(*args, legend=True, **kwargs)
Plot 1D PDFs.

Parameters *args (variable length argument list) – PDFs: tuple (X, P) or (X, P,
kwargs_dict)

Keyword Arguments
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• potential (ndarray 2-tuple) – X, V where V is the value of the potential at the
sample points X. Default (None, None).

• fig (matplotlig.figure.Figure) – Figure object to use for the plot. Create one if
not provided.

• ax (matplotlig.axes.Axes) – Axes object to use for the plot. Create one if not
provided.

• legend (bool) – Add legend (default True).

• **kwargs – Other keyword arguments forwarded to matplotlib.pyplot.axes.

Returns fig, ax – The figure.

Return type matplotlib.figure.Figure, matplotlib.axes.Axes

stochrare.io.plot.returntime_plot(*args)
Make return time plot: amplitude a as a function of the return time r(a)

Parameters *args (variable length argument list) – Pairs of the form (a, r(a))

Returns fig, ax – The figure.

Return type matplotlib.figure.Figure, matplotlib.axes.Axes

Functions

ensemble_plot1d_box(*args, **kwargs) Plot an ensemble of 1D trajectories in a 3D box.
pdf_plot1d(*args[, legend]) Plot 1D PDFs.
returntime_plot(*args) Make return time plot: amplitude a as a function of the

return time r(a)
trajectory_plot1d(*args, **kwargs) Plot 1D trajectories.

3.6 stochrare.utils

3.6.1 Utilities

This module contains various tools which are not really intended to be used by external code, but should be used by
various other modules in the package. This includes decorators, but is not restricted to it.

stochrare.utils.pseudorand(fun)
Decorator for methods of random objects. If the object’s __deterministic__ attribute is set to True, the random
number generator will be seeded with a fixed value (here, 100, chosen arbitrarily) before calling the method.
Hence the method will behave in a deterministic way, only if the instance was initialized with the __determinis-
tic__ flag. This is essentially useful for testing.

The decorator will raise an error if the object does not have a __deterministic__ attribute.

Functions

pseudorand(fun) Decorator for methods of random objects.
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